Name \qquad Date \qquad

1. The rectangles below have the same area. Move the () to find the missing side lengths. Then solve.

36 cm
1 cm \square
b. Area: $1 \times 36=36$ sq cm

a. Area: $4 \times 9=36$ sq cm

c. Area: $4 \times 9=4 \times(3 \times 3)$

$$
\begin{aligned}
& =(4 \times 3) \times 3 \\
& =-12 \times 3 \\
& =36 \text { sq cm }
\end{aligned}
$$

2. Does Problem 1 show all the possible whole number side lengths for a rectangle with an area of 36 square centimeters? How do you know?
$\begin{array}{ll}1 \times 36 & 4 \times 9 \\ 2 \times 18 & 6 \times 6\end{array}$ We know that we found all of the possible
3×12
Whole number side lengths because there is no other number that can be multiplied to equal 36. areas of $24,36,48$, or 72 square units using the associative property. engage ${ }^{\text {ny }}$
Date: 9/30/13
3.

a. Find the area of the rectangle below.

b. Hilda says a 4 cm by 12 cm rectangle has the same area as the rectangle in Part (a). Place () in the equation to find the related fact and solve. Is Hilda correct? Why or why not?

$$
\begin{aligned}
4 \times 12 & =4 \times(2 \times 6) \\
& =(4 \times 2) \times 6 \\
& =\frac{8}{48} \times 6 \\
& =48 \mathrm{sq} \mathrm{~cm}
\end{aligned}
$$

$$
8 \times 6=48
$$

$$
4 \times 12=48
$$

Both rectangles have an area of 48 sg cm .
c. Use the expression 8×6 to find different side lengths for a rectangle that has the same area as the rectangle in Part (a). Show your equations using (). Then estimate to draw the rectangle and label

$$
\begin{aligned}
8 \times 6 & =8 \times(2 \times 3) \\
& =(8 \times 2) \times 3 \\
& =16 \times 3
\end{aligned} \quad \begin{aligned}
8 \times 6 & =(2 \times 4) \times 6 \\
& =2 \times(4 \times 6) \\
& =2 \times 24
\end{aligned}
$$

\square

Date:

