Name \qquad Date \qquad

1. Label the side lengths of the shaded and unshaded rectangles. Then find the total area of the large rectangle by adding the areas of the 2 smaller rectangles.
a.

$9 \times 8=(5+4) \times 8$
$=(5 \times 8)+(4 \times 8)$
$=\frac{40}{72}+\frac{32}{}=7$ square units
b.

$$
\begin{aligned}
12 \times 5 & =\left(\frac{10}{10}+2\right) \times 5 \\
& =(10 \times 5)+(2 \times 5) \\
& =50+10 \\
& =60 \text { square units }
\end{aligned}
$$

$$
\begin{aligned}
7 \times 13 & =7 \times\left(\frac{10}{}+3\right) \\
& =(7 \times 10)+(7 \times 3) \\
& =70+21 \\
& =91 \text { square units }
\end{aligned}
$$

$$
\begin{aligned}
9 \times 12 & =9 \times\left(\frac{10}{}+\frac{2}{10}\right)+(9 \times 2 \\
& =(9 \times 10 \\
& =\frac{9}{10}+18 \\
& =108 \text { square units }
\end{aligned}
$$

2. Finn imagines 1 more row of nine to find the total area of 9×9 rectangle. Explain how this could help him solve 9×9.

$$
\begin{aligned}
9 \times 9 & =(10-1) \times 9 \\
& =(10 \times 9)-(1 \times 9) \\
& =90-9 \\
& =81
\end{aligned}
$$

10 nines is 90 , but Finn only wanted 9 nines, so he needed to subtract one nine from 90 , which gives 81 as the product.
3. Shade to break the 16×4 rectangle into 2 smaller rectangles. Then find the sum of the areas of the 2 smaller rectangles to find the total area. Explain your thinking.

$$
\begin{aligned}
16 \times 4 & =(10+6) \times 4 \\
& =(10 \times 4)+(6 \times 4) \\
& =40+24 \\
& =64
\end{aligned}
$$

We cut the 16×4 rectangle into two smaller rectangles: one is 10×4 and the other is 6×4. Their areas are 40 square units and 24 square units. The total area is $40+24=64$ square units. large rectangle by adding two products. 9/30/13
Date:

